Содержание
Часть I
Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.
Примеры алгебраических выражений:
2m -n; 3·(2a + b); 0,24x; 0,3a -b · (4a + 2b); a2– 2ab;
![]()
Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.
Часть II
Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.
Примеры. Найти значение выражения:
1) a + 2b -c при a = -2; b = 10; c = -3,5.
2) |x| + |y| -|z| при x = -8; y = -5; z = 6.
Решение.
1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:
— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.
2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:
|-8| + |-5| -|6| = 8 + 5 -6 = 7.
Часть III
Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).
Примеры. При каких значениях переменной выражение не имеет смысла?
![]()
Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!
В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.
В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.
В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.
В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
Часть IV
Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.
Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.
Тождество
Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.
Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.
Примеры.
a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:
1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).
Решение. Вспомним распределительное свойство (закон) умножения:
(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).
1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.
2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.
3) a·(6m -2n + k) = 6am -2an +ak.
б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:
4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.
Решение. Применим законы (свойства) сложения:
a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).
4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.
5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.
6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.
в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:
7) 4 · х · (-2,5); 8) -3,5 · 2у · (-1); 9) 3а · (-3) · 2с.
Решение. Применим законы (свойства) умножения:
a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).
7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.
8 ) -3,5 · 2у · (-1) = 7у.
9) 3а · (-3) · 2с = -18ас.
Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.
Примеры. Упростите, используя сокращение дробей.
![]()
Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b; дробь 11) сократим на а и дробь 12) сократим на 7n. Получаем:
Алгебраические выражения применяют для составления формул.
Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.








Спасибо большое, тему сразу поняла.