p=logaap Любое число можно представить в виде логарифма по любому основанию.
Под знаком логарифма могут находиться только положительные числа, причем, основание логарифма не равно единице.
Рассмотрим следующие примеры.
Пример 1
I. Представить число 2 в виде логарифма по основанию: 1) 3; 2) 5; 3) 10.
Решение.
1) 2=log33²=log39;
2) 2=log55²=log525;
3) 2=lg10²=lg100.
Пример 2
II. Представить в виде десятичного логарифма числа: 1) -1; 2) -2; 3) -3.
Решение.
1) -1=lg10-1=lg0,1;
2) -2=lg10-2=lg0,01;
3) -3=lg10-3=lg0,001.
Решить уравнение:
1) lg (x-9)+lg (2x-1)=2.
Решение.
lg ((x-9)(2x-1))=lg102; представили сумму логарифмов в виде логарифма произведения и число 2 в правой части равенства записали в виде десятичного логарифма (логарифма с основанием 10).
lg (2x2-18x-x+9)=lg100; упростили выражения под знаками логарифмов.
2x2-19x+9=100; получили после потенцирования.
2x2-19x-91=0. Получили квадратное уравнение вида: ax2+bx+c=0.
a=2, b=-19, c=-91. Решим квадратное уравнение по общей формуле.
D=b2-4ac=(-19)2-4∙2∙(-91)=361+728=1089=332 > 0; два действительных корня:
Проверка. Значение х=-3,5 не удовлетворяет условию существования логарифма.
Проверяем данное равенство при х=13.
lg (13-9)+lg (2∙13-1)=2;
lg4+lg25=2;
lg (4∙25)=2;
lg100=2;
2=2.
Ответ: 13.
2) log3(x+1)+log3(x+3)=1.
Решение.
Сумму логарифмов заменим логарифмом произведения, единицу в правой части представим в виде логарифма с основанием 3:
log ((x+1)(x+3))=log33;
log (x2+x+3x+3)=log33. Потенцируем:
x2+4x+3=3;
x2+4x=0;
x (x+4)=0;
x=0 или x+4=0, отсюда x=-4.
Анализируем результаты:
х=-4 не подойдет, так как при этом значении под знаком логарифма окажутся отрицательные числа, что недопустимо.
Проверим значение х=0.
Проверка.
log3(0+1)+log3(0+3)=1;
log31+log33=1;
0+1=1;
1=1.
Ответ: 0.