Решение показательных уравнений — это материал 10-11 класса. Какие же уравнения называются показательными?
Уравнения, содержащие переменную в показателе степени, называются показательными уравнениями.
Содержание
Простейшие показательные уравнения
Простейшие показательные уравнения — это уравнения вида: ax=ay. Отсюда следует равенство: х=у. В самом деле, степени с одинаковыми основаниями могут быть равными только в том случае, если равны показатели этих степеней.
Ниже вы найдете примеры решения показательных уравнений.
Уравнение 1
Решить уравнение:
5x=125. Представим число 125 в виде степени числа 5:
5x=53; Степени равны, их основания равны, значит, и показатели степеней будут равны:
x=3.
Уравнение 2
4x=32. Представим левую и правую части в виде степеней с основанием 2:
(22)x=25; используем формулу возведения степени в степень: (ax)y=axy
22x=25;
2x=5 |:2
x=2,5.
Уравнение 3
32x-1=81. Число 81 представим в виде степени числа 3:
32x-1=34; приравняем показатели степеней с одинаковыми основаниями:
2x-1=4; решаем простейшее линейное уравнение:
2x=4+1;
2x=5 |:2;
x=2,5.
Уравнение 4
К правой части применяем формулу: (a/b)-x=(b/a)x. Получим равенство степеней с одинаковыми основаниями.
Приравниваем показатели степеней и находим х из полученного линейного уравнения.
Уравнение 5
Приравняем показатели степеней с одинаковыми основаниями.
Переносим степень из правой части уравнения в левую.
Вынесли общий множитель (2х-6) за скобки. Произведение двух или нескольких множителей равно нулю, если один из множителей равен нулю, а другие при этом значении не теряют смысла. Содержимое каждой из скобок приравниваем к нулю и решаем простейшие уравнения.
Уравнение 6
7∙5x-5x+1=2∙53.
Показатели степеней складываются, если степени перемножаются ( ax∙ay=ax+y ), поэтому:
7∙5x-5x∙51=2∙53;
5x(7-5)=2∙53; вынесли общий множитель за скобки.
5x∙2=2∙53 |:2
5x=53; отсюда следует:
x=3.
Уравнение 7
3x+2+4∙3x+1=21. Применим формулу: ax+y=ax∙ay (При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают):
3x∙32+4∙3x∙31=21; вынесем общий множитель за скобки:
3x(9+12)=21;
3x∙21=21 |:21
3x=1; число 1 можно представлять в виде нулевой степени с любым основанием.
3x=30;
x=0.
Уравнение 8
51+2x+52x+3=650. Решаем аналогично.
51∙52x+52x∙53=650;
52x(5+125)=650;
52x∙130=650 |:130
52x=5; приравняем показатели равных степеней с основаниями 5.
2x=1 |:2
x=0,5.
Методы решения показательных уравнений достаточно известны и мы подробно объяснили, как их применять при решении показательных уравнений на примерах.