10.2.5. Решение тригонометрических неравенств. Часть 5


На предыдущих занятиях мы решали графическим способом тригонометрические неравенства вида:

На этом занятии мы решим три неравенства вида: tgt < a.

10.2.5. Решение тригонометрических неравенств. Часть 5.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=tgt  и y=a.

3. Находим промежуток значений t,  при которых тангенсоида располагается ниже прямой у=а. Левая граница этого промежутка всегда (-π/2), а правая arctg a

4. Записываем двойное неравенство для аргумента t, учитывая период тангенса Т=π (будет между абсциссами(-π/2) и  arctg a).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решение тригонометрических неравенств графическим способом надежно страхует нас от ошибок только в том случае, если мы грамотно построим графики.

Первое неравенство

10.2.5. Решение тригонометрических неравенств. Часть 5.

Построим графики функций y=tgx и у=1. Подробно рассмотрим построение тангенсоиды. Приготовим координатную плоскость хОу следующим образом:

10.2.5. Решение тригонометрических неравенств. Часть 5.

единичный отрезок равен двум клеткам; так как значение π≈3,14, то π на горизонтальной оси Ох будет изображаться шестью клетками; половина π (это π/2) — тремя клетками. Одна клетка — это π/6; полторы клетки — это π/4; две клетки будут соответствовать аргументу π/3.

Мы знаем, что тангенс 90° не существует, а так как функция тангенса периодическая с наименьшим периодом, равным π, то не существует тангенс (90°+πn). Учтем это при построении графика и проведем две асимптоты: х= - π/2 и х=π/2.

Итак, в промежутке от - π/2 до π/2 тангенс будет «пробегать» все свои значения. Пользуясь значениями тангенса некоторых углов и свойством нечетности функции тангенса (график будет симметричен относительно начала координат), строим точки в приготовленной координатной плоскости, через которые и проведем тангенсоиду.

10.2.5. Решение тригонометрических неравенств. Часть 5.

10.2.5. Решение тригонометрических неравенств. Часть 5.

 

Построим прямую у=1.

Проведем ее параллельно оси Ох, выше на один единичный отрезок (выше на 2 клетки).

Прямая у=1 пересекает тангенсоиду в точке с координатами (π/4; 1).

 

Определяем промежуток значений х, при которых неравенство будет верным, т.е. внутри которого тангенсоида располагается ниже прямой у=1. Учтем, что неравенство нестрогое, значит, правый конец промежутка (π/4) входит во множество решений неравенства. Записываем решение в виде двойного неравенства. Ответ запишем в виде промежутка.

10.2.5. Решение тригонометрических неравенств. Часть 5.

Второе неравенство

10.2.5. Решение тригонометрических неравенств. Часть 5.

Отметим промежуток значений t, при которых точки тангенсоиды находятся ниже точек прямой у=1. Запишем этот промежуток в виде двойного неравенства. Затем перезапишем его для первоначального аргумента и выразим х. Ответ запишем в виде промежутка.

10.2.5. Решение тригонометрических неравенств. Часть 5.

Третье неравенство

10.2.5. Решение тригонометрических неравенств. Часть 5.

Отмечаем промежуток значений t, при которых неравенство верно. У нас нестрогое неравенство, значит, правый конец промежутка значений t также является решением неравенства. Возвращаемся к первоначальному аргументу и выражаем х. Ответ записываем в виде промежутка значений переменной х.

10.2.5. Решение тригонометрических неравенств. Часть 5.

Смотреть видео: «10.2.5. Решение тригонометрических неравенств. Часть 5.»

Неравенства вида tgt < a можно решать и без графиков, по соответствующей формуле.

Если tgt < a, то — (π/2) + πn < t < arctg a + πn, где nєZ.

Оцените статью
( 2 оценки, среднее 5 из 5 )
математика-повторение
1 Комментарий
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии
Руслан

Классно объясняете