10.2.2. Решение тригонометрических неравенств. Часть 2


На прошлом занятии «10.2.1. Решение тригонометрических неравенств. Часть 1» мы решили три неравенства вида sint < a. На этом уроке мы рассмотрим три неравенства вида sint > a, где -1≤а≤1.

10.2.2. Решение тригонометрических неравенств. Часть 2.

Составим алгоритм решения.

1. Если аргумент — сложный (отличен от х), то заменяем его на t.

2. Строим в одной координатной плоскости tOy графики функций y=sint  и y=a.

3. Находим такие две соседние точки пересечения графиков (поближе к оси Оу), между которыми синусоида располагается выше прямой у=а. Находим абсциссы этих точек.

4. Записываем двойное неравенство для аргумента t, учитывая период синуса (t будет между найденными абсциссами).

5. Делаем обратную замену (возвращаемся к первоначальному аргументу) и выражаем значение х из двойного неравенства, записываем ответ в виде числового промежутка.

Решаем первое неравенство

10.2.2. Решение тригонометрических неравенств. Часть 2.

Построение графика синуса мы рассмотрели подробно в занятии  «10.2.1. Решение тригонометрических неравенств. Часть 1».

10.2.2. Решение тригонометрических неравенств. Часть 2.

10.2.2. Решение тригонометрических неравенств. Часть 2.Учитывая периодичность функции синуса, запишем двойное неравенство для значений аргумента t, удовлетворяющий последнему неравенству. Вернемся к первоначальной переменной. Преобразуем полученное двойное неравенство и выразим переменную х. Ответ запишем в виде промежутка.

Решаем второе неравенство

10.2.2. Решение тригонометрических неравенств. Часть 2.

При решении второго неравенства нам пришлось преобразовать левую часть данного неравенства по формуле синуса двойного аргумента, чтобы получить неравенство вида: sint≥a. Далее  мы следовали алгоритму.

Решаем третье неравенство

10.2.2. Решение тригонометрических неравенств. Часть 2.

Смотрите видео: «10.2.2. Решение тригонометрических неравенств. Часть 2.»

Дорогие выпускники и абитуриенты! Имейте ввиду, что такие способы решения тригонометрических неравенств, как приведенный выше графический способ и, наверняка, вам известный, способ решения с помощью единичной тригонометрической окружности (тригонометрического круга)  применимы лишь на первых этапах изучения раздела тригонометрии «Решение тригонометрических уравнений и неравенств». Думаю, вы припомните, что и простейшие тригонометрические уравнения вы вначале решали с помощью графиков или круга. Однако, сейчас вам не придет в голову решать таким образом тригонометрические уравнения. А как вы их решаете? Правильно, по формулам. Вот и тригонометрические неравенства следует решать по формулам, тем более, на тестировании, когда дорога каждая минута. Итак, решите три неравенства этого урока по соответствующей формуле.

Если sint > a, где  -1≤a≤1, то  arcsin a + 2πn < t < π — arcsin a + 2πn, nєZ.

Учите формулы! 

 

Оцените статью
( 2 оценки, среднее 5 из 5 )
математика-повторение
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии